优化控制重点资质

科远SyncBASE 5.0 实时数据库系统软件

科远高炉热风炉 智能优化控制软件

基于人工智能的 火电厂自动控制系统

系统软件

及明专利证书

… 件本

一种基于煤质在线

监测的燃烧优化方法

:.. ipt do (

一种利用自备电厂负荷

科远煤质在线测量 与智能燃烧优化软件

一种火力发电厂 主汽温预估优化控制方法

一种基于数据分析的热 风炉无流量计控制方法

大型电站锅炉高效低污染燃烧 调节的钢厂煤气调度系统 的先进调控技术及应用 获江苏省科学技术奖一等奖

预报的设置方法

基于Web的 智能燃烧优化软件

发明专利证书 選

部分业绩展示及客户评价

南京科远智慧科技集团股份有限公司

电话(TEL): +86 25 6859 8968 传真(FAX): +86 25 6983 6118

中国•南京 江宁区清水亭东路1266号

更多产品信息,请拨打24小时全国服务热线 400-881-8758

科远智慧

股票代码: 002380

智能优化控制系统 OPT6000

(冶金)

智慧产业建设引领者

SCIYON _{科远智慧} 科远智慧简介

智慧产业建设引领者

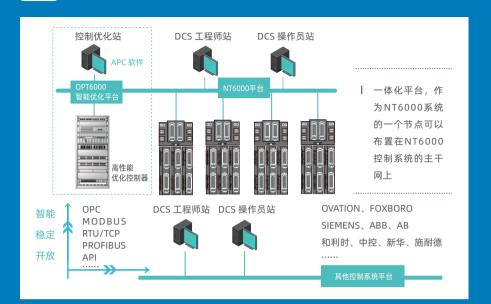
南京科远智慧科技集团股份有限公司(简称:科远智慧)创立于1993年5月,2010年3月深 交所主板上市 (股票代码: 002380), 是国家级高新技术企业、国家级制造业单项冠军,智 慧产业建设引领者。

围绕"3060"碳达峰、碳中和目标,业务涉及"智慧工业"、"智慧城市"等板块。科远智慧每 年研发投入占营收 10% 以上,有 600+人研发团队,并通过了 CMMI V2.0 L5 软件能力成熟度模 型集成模型 5 级认证。

科远智慧智能优化控制系统 OPT6000

优化技术平台优势

科远智慧提供的OPT6000智能优化控制系统拥有流程行业专用算法库和专用软测量技术,配合技术 专家团队、基于EmpowrX工业互联网平台的强大研发能力,可以发现和分析生产过程中存在的控制 问题,并结合工艺特点,为电力、冶金、建材、化工等工业领域提供定制化且完善的解决方案。


项目实施优势

科远智慧在能源发电行业深耕优化控制多年, 在智能优化控制领域有扎实的技术积累和丰富的项目实 施经验。优化技术专家综合能力突出, 实施项目遍及全国三十多个省份。项目涉及热电、 冶金、 化 工、建材、制药、造纸、供热等多场景全方位应用,截至目前已投产 200+ 台机组的优化提升项目。

依托东南大学 - 科远联合开发中心、 江苏省唯一一家热工自动化工程技术研究中心和博士后工作站 作为技术服务平台,能够提供专家级的冶金行业自动优化控制专业解决方案。

系统架构

软件架构

	<u> 8</u>	_	<u></u>	
展示层	DCS操作员/工程师站	桌面原	立用程序 	Web客户端
应用服务层	智能监测与分析	 热电机组优化	冶金炉窑优化	其他
	执行机构性能检测	锅炉燃烧优化	煤气锅炉	水泥线优化
	控制回路品质监测	智能协调控制	热风炉	垃圾炉智能燃烧
	高级报警管理	母管协调优化	加热炉	深度调峰
	智能报表 教测量技术	一键启停APS 除氧器群控	竖炉 退火炉	两个细则优化
	涉网性能监测	环保优化	煤气管网压力协调	定期切换
			·	
数据治理层	机理分析	数据建模	智能算法	机器学习
	故障推理	经验知识	专家规则	诊断模型
	数据挖掘与管理			
	数据存储	数据处理	历史数据	数据采集
	数据发布	数据查询	数据趋势	数据管控
数据层	SyncBase		关系型数据库	文件库
基础设施层	优化服务器	操作系统	网络	(优化控制器

技术特点

◆ 基于Empowork工业互联网技术平台开发,拥有100+算法、200+设备模型、100+工业APP、10+不同行业领域解决方案。

采用一体化和非一体化平台设计,配备高性能控制器、服务器及丰富可扩展的通讯接口, 针对不同应用场景打造安全可靠的硬件平台支撑。

以强大的数据处理软件作为基础建设,采用高级算法对数据进行挖掘处理和分析计算处理,搭建功能丰富、形式多样的应用功能和简洁美观的展示平台。

煤气锅炉优化控制

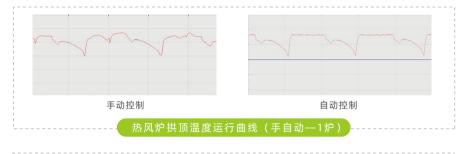
实现功能:

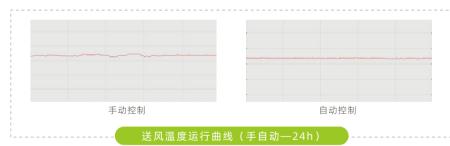
- ৪ | 实现长期可靠的全自动化运行,明显降低运行人员劳动强度
- ☑ | 实现最优空燃比控制,提升锅炉效率
- ◎ 降低综合产汽煤耗,提升节能效果
- 提高变负荷速率,提升变负荷响应能力
- ◎ │ 适应煤气管网压力和煤气热值的频繁波动
- ⊙ │ 实现系统关键工艺指标平稳控制,操作质量、安全性能得到大幅提高

获得收益:

● 减少煤气放散

- 减少锅炉非停次数
- 系统长期自动投入率可达 95% 以上
- 吨蒸汽煤气消耗降低 1.5% 以上
- 系统关键工艺指标波动幅度比手动调节时降低 30% 以上


冶金高炉热风炉化控制


实现功能:

- ❷ □ 实现热风炉长期可靠的全自动优化运行
- 🔞 🗆 实现最佳空燃比优化控制,提升经济性,实现节能降耗的目的
- 实现多种安全控制功能,使生产安全性大大提高
- ⊙ │ 双不固定烧炉制度,可以满足多种生产工况
- ↓ 提供智能报表统计功能
- 😝 📗 通过软测量技术及机器学习,实现无流量计控制

获得收益:

- 长期可靠自动投入率达 95% 以上
- 同等送风温度条件下,煤气消耗降低 3% 及以上
- 同等煤气消耗条件下,送风温度提高 10℃以上

煤气协调优化控制

实现功能:

- └── │ 提高各煤气用户运行的安全性及经济性
- △ │ 实现煤气管网压力稳定
- ◎ │ 实现各机组负荷自动调度
- ◎ | 减少煤气放散次数

获得收益:

- 系统长期自动投入率可达 90% 以上
- 煤气管网压力波动幅度比人工调度时降低 30% 以上

● 煤气调度室调度次数减少 90% 以上

冶金加热炉优化控制

实现功能:

- 💪 | 实现加热炉长期可靠的全自动优化运行
- 🗠 | 实现多种安全控制功能
- 🚳 | 实现最佳空燃比优化控制

获得收益:

- 长期可靠自动投入率达 95% 以上
- 出钢温度控制精度达到 R±10℃

SCIYON

- 炉膛压力控制精度达 R±10Pa
- 降低吨钢煤气消耗 3% 以上

冶金球团竖炉优化控制

实现功能:

- 🙆 | 实现球团竖炉长期可靠的全自动优化运行
- ◎ │ 实现最佳空燃比优化控制,提升经济性,实现节能降耗的目的
- 🔞 | 实现设置自动搬出制度以及运行统计与考核功能

获得収益

●长期可靠自动投入率达90%以上 ● 熟球吨煤气消耗减少2%以上 ● 竖炉燃烧室控制温度达到R±10°C

冶金退火炉优化控制

实现功能:

- 🙆 | 实现退火炉长期可靠的全自动优化运行
- 💀 | 实现退火炉温度稳定,保证产品质量
- ◎ │ 实现最佳空燃比优化控制,提升经济性,实现节能降耗的目的
- 🔞 | 实现多种安全控制功能及运行统计与考核功能

获得收益:

● 长期可靠自动投入率达 90% 以上 ● 煤气消耗比手动节省 3% 以上 ● 退火炉控制温度达到 R±20℃